CORRECTION TO "CARTAN SUBALGEBRAS" OF SIMPLE LIE ALGEBRAS"

ROBERT LEE WILSON

Richard Block has pointed out that the argument of (5.5) in [5] is incorrect. In particular, the inequality " $n_{\beta+\alpha}+n_{\beta-\alpha}\geq n(p-1)p$ " is unjustified. Thus the proof of Theorem 2.1 is incomplete. However, the theorem is correct as stated. We give a corrected proof here.

We will use the notation of [5], will continue the numbering of sections from [5] and will refer to results from [5] and from this note by their numbers without further identification. Thus Propositon m.n is to be found in $\S m$ of [5] if $m \le 5$ and in $\S m$ of this note if $m \ge 6$.

We begin by noting that if $\dim T = 1$ and $\overline{H} \neq T + I$ then Γ generates a cyclic group and so Proposition 3.3 shows we must have $(\alpha, \alpha) \in S$ for some $\alpha \in \Gamma$. However, the results of §4 show that this is impossible. Thus Theorem 2.1 holds when $\dim T = 1$. This is the only case of Theorem 2.1 used in [6] and hence the classification of the simple Lie algebras of toral rank one given in [6] is valid. We will use this classification below.

We will now assume that (3.3.2) holds and derive a contradiction, thus proving Theorem 2.1.

6. A module for $\sum L_{i\alpha}$.

(6.1) Let α and β be as in (3.3.2). For any $0 \neq \gamma$, $\delta \in \mathbf{Z}\alpha + \mathbf{Z}\beta$ define

$$(\cdot,\cdot)_{\delta}\colon L_{\gamma}\times L_{-\gamma}\to F$$

by

(6.1.1)
$$(u, v)_{\delta} = \delta([b, [u, v]])$$

for all $u \in L_{\gamma}$, $v \in L_{-\gamma}$. For $0 \neq \gamma \in \mathbf{Z}\alpha + \mathbf{Z}\beta$ define $K_{\gamma} = (L_{-\gamma})^{\perp}$ where the complement is taken relative to the form $(\cdot, \cdot)_{\delta}$ for any $\delta \notin \mathbf{Z}\gamma$. Since $(u, v)_{\delta}$ is a linear function of δ and

$$(6.1.2) (L_{\gamma}, L_{-\gamma})_{\gamma} = (0)$$

by (3.3.2) this definition is independent of the choice of δ .

Let $m_{\gamma} = \dim(L_{\gamma}/K_{\gamma})$. Then by (3.3.2) we have m_{α} , $m_{\beta} \neq 0$. As is shown in §5.2, $p|m_{\gamma}$. We may, without loss of generality, assume that $m_{\alpha} \geq m_{\gamma}$ for all $\gamma \in \mathbf{Z}\alpha + \mathbf{Z}\beta$, $\gamma \neq 0$.

Received by the editors August 21, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 17B20, 17B50.

This research was partially supported by National Science Foundation Grant number DMS-8603151.

(6.2) LEMMA. Let $0 \neq \gamma$, $\delta \in \mathbf{Z}\alpha + \mathbf{Z}\beta$, $\gamma \notin \mathbf{Z}\delta$. Then $[\overline{H}, K_{\gamma}] \subseteq K_{\gamma}$ and $[L_{\delta}, K_{\gamma}] \subseteq K_{\gamma+\delta}$.

PROOF. From §3.5 we have that $([h,x],y)_{\delta} = -(x,[h,y])_{\delta}$ for all $x \in L_{\gamma}$, $y \in L_{-\gamma}$, $h \in \overline{H}$. Hence $[\overline{H},K_{\gamma}] \subseteq K_{\gamma}$. Also

$$\begin{split} \delta([b,[[L_{\delta},K_{\gamma}],L_{-\delta-\gamma}]]) &\subseteq \delta([b,[[L_{\delta},L_{-\delta-\gamma}],K_{\gamma}]]) + \delta([b,[L_{\delta},[K_{\gamma},L_{-\delta-\gamma}]]]) \\ &\subseteq \delta([b,[L_{-\gamma},K_{\gamma}]]) + \delta([b,[L_{\delta},L_{-\delta}]]) \\ &= (L_{-\gamma},K_{\gamma})_{\delta} + (L_{\delta},L_{-\delta})_{\delta} = (0) \end{split}$$

by the definition of K_{γ} and (6.1.2). As $\delta \notin \mathbf{Z}(\gamma + \delta)$ we have $[L_{\delta}, K_{\gamma}] \subseteq K_{\delta + \gamma}$. (6.3) Let $\overline{L}^{(\alpha)} = \overline{H} + \sum_{i=1}^{p-1} L_{i\alpha}$.

COROLLARY. The adjoint representation induces a representation θ of $\overline{L}^{(\alpha)}$ on $\sum_{i=0}^{p-1} L_{\beta+i\alpha}/K_{\beta+i\alpha}$. Furthermore $L_{i\alpha} \cap \ker \theta = K_{i\alpha}$ for $1 \leq i \leq p-1$.

PROOF. By the lemma $K_{i\alpha} \subseteq (L_{i\alpha} \cap \ker \theta)$. Now $\ker \theta$ is an ideal in $\overline{L}^{(\alpha)}$ so $[b, [L_{-i\alpha}, L_{i\alpha} \cap \ker \theta]] \subseteq (\ker \theta) \cap (T+I)$. Then if $u \in [b, [L_{-i\alpha}, L_{i\alpha} \cap \ker \theta]]$ we have $[u, L_{\beta}] \subseteq K_{\beta}$ and so $\beta(u) = 0$. Therefore $(L_{-i\alpha}, L_{i\alpha} \cap \ker \theta)_{\beta} = (0)$ and so we have equality.

7. Solvable subalgebras of $\overline{L}^{(\alpha)}$.

(7.1) LEMMA. Let A be an $(\operatorname{ad} T)$ -invariant subalgebra of $\overline{L}^{(\alpha)}$. Assume that $(\operatorname{ad} x)|_A$ is nilpotent for every $x \in A_0$. Then A is solvable.

PROOF. We will proceed by induction on dim A. Since [A,A] is $(\operatorname{ad} T)$ -invariant and $[A,A]_0 \subseteq A_0$ the result holds if $[A,A] \neq A$. Let Q be a maximal subalgebra of A containing A_0 . Then Q induces a Lie algebra of linear transformations of A/Q. As $(A/Q)_0 = (0)$, and as the elements of $A_0 = Q_0$ act nilpotently on A/Q by hypothesis, the Engel-Jacobson theorem implies that this algebra is nil, hence annihilates a subspace of A/Q. By the maximality of Q this implies that $\dim(A/Q) = 1$ and $[A,A] \subseteq Q$. Thus $[A,A] \neq A$, as required.

(7.2) Let $U = \sum_{i=1}^{p-1} [L_{i\alpha}, L_{-i\alpha}]$ and $M = U + \sum_{i=1}^{p-1} L_{i\alpha}$. Let τ denote the canonical homomorphism of M onto M/(solv M).

LEMMA. If M is not solvable then $M/(\operatorname{solv} M)$ is simple and has toral rank one with respect to $\tau(U)$. Consequently, if $\dim \tau(M) < p^2 - 2$ then M contains an $(\operatorname{ad} T)$ -invariant solvable subalgebra $S \supseteq U$ with $\dim(L_{\alpha}/S_{\alpha}) + \dim(L_{-\alpha}/S_{-\alpha}) \le 1$.

PROOF. Lemma 7.1 shows that any proper ideal of M is solvable. Thus if M is not solvable, $M/(\operatorname{solv} M)$ is simple. Furthermore, since M is not solvable $(\operatorname{ad} U)|_{M} = (\operatorname{ad} M_0)|_{M}$ is not nil so U is a Cartan subalgebra of M. Hence $\tau(U)$ is a Cartan subalgebra of $M/(\operatorname{solv} M)$ and $M/(\operatorname{solv} M)$ obviously has toral rank one with respect to $\tau(U)$. Since $\ker(\theta|_{M})$ is a proper ideal in M it is contained in solv M. Thus $\dim \theta(M) \geq \dim(M/(\operatorname{solv} M))$. Since $M/(\operatorname{solv} M) \cong \mathfrak{sl}(2)$, some $W(1:\mathbf{n})$ or some $H(2:\mathbf{n}:\Phi)^{(2)}$ by Theorem 1.4 of [6] the inequality $\dim \theta(M) < p^2 - 2$ forces $M/(\operatorname{solv} M) \cong \mathfrak{sl}(2)$ or W(1:1). Then taking S to be the preimage in M of the solvable subalgebra $\tau(M_{\alpha}) + \tau(U)$ in $M/(\operatorname{solv} M)$ gives the result.

(7.3) Let
$$\widetilde{U} = \overline{Fb} + \overline{U}$$
 and $\widetilde{M} = \widetilde{U} + M$.

LEMMA. \widetilde{M} contains an $(\operatorname{ad} T)$ -invariant solvable subalgebra $S \supseteq \widetilde{U}$ such that $\dim(L_{\alpha}/S_{\alpha}) + \dim(L_{-\alpha}/S_{-\alpha}) \leq 3$.

PROOF. If M is solvable we may take $\widetilde{M}=S$. Now assume M is not solvable. By Lemma 7.2 $M/(\operatorname{solv} M)$ is simple and has toral rank one with respect to $\tau(U)$ so by the previously established (§4) rank one case of Theorem 2.1 $[U,U]/([U,U]\cap\operatorname{solv} M)$ is nil. Since solv M is a proper ideal in M ad $((\operatorname{solv} M)_0)|_M$ is nil, and hence $(\operatorname{ad}[U,U])|_M$ is nil. Now

$$[\widetilde{U},\widetilde{U}] = [\overline{Fb} + \overline{U},\overline{Fb} + \overline{U}] = [Fb + U,Fb + U] = [b,U] + [U,U].$$

But $\alpha([b,U])=(0)$ by §4. Thus $\operatorname{ad}([b,U])|_M$ is nil and so $(\operatorname{ad}[\widetilde{U},\widetilde{U}])|_M$ is nil. Thus setting $V=(\operatorname{ad}\widetilde{U})|_M$ we see that $V=T_2+J_2$ where T_2 is a one-dimensional torus in V and J_2 is a nil ideal in V. Thus the algebra $(\operatorname{ad}\widetilde{M})|_M$ with Cartan subalgebra V satisfies the hypotheses of §2 of [6]. Taking (P,Q) to be a pair of subspaces of $(\operatorname{ad}\widetilde{M})|_M$ satisfying (2.1.1)-(2.1.4) of [6] and with P of maximal dimension among all such pairs we see by Corollary 2.10 of [6] that $P=(\operatorname{ad}\widetilde{M})|_M$. Then Lemma 2.8 of [6] shows that each weight of P/Q has multiplicity one and that there exists a solvable subalgebra S' of Q which contains V and satisfies $\dim(Q_\alpha/S'_\alpha)+\dim(Q_{-\alpha}/S'_{-\alpha})\leq 1$. Letting $S\subseteq\widetilde{M}$ be the inverse image of S' gives the result.

8. Conclusion.

(8.1) LEMMA. Let S be an (ad T)-invariant solvable subalgebra of \widetilde{M} . Let $s_i = \dim(L_{i\alpha}/S_{i\alpha})$ for $1 \le i \le p-1$. Then $s_1 + s_{-1} \ge 2$ and if $b \in S$ then $s_1 + s_{-1} \ge 3$. Furthermore, if $S \supseteq \widetilde{U}$ and $s_1 + s_{-1} = 3$ then $\dim \theta(\widetilde{M}) \le p^2 - p + 6$.

PROOF. By Corollary 6.3 S acts on $C = \sum L_{\beta+i\alpha}/K_{\beta+i\alpha}$. Let W be an irreducible S-submodule of C. Then

(8.1.1)
$$\dim W \le \sum_{i=0}^{p-1} m_{\beta+i\alpha} \le pm_{\alpha}.$$

Define $\Lambda: S \to \operatorname{End} W$ by $\Lambda(x) = \theta(x)|_W$ for $x \in S$.

The representation theory of solvable restricted Lie algebras (Schue [2], Strade [3], Weisfieler and Kac [4]; cf. Theorem 1.13.1 of [1]) shows that $\dim W = p^m$ and that the restricted subalgebra S_1 of End W generated by $\Lambda(S)$ contains a restricted subalgebra Q_1 which preserves a one-dimensional subspace $N \subseteq W$ and satisfies $\dim(S_1/Q_1) = m$. Then setting $Q = \Lambda^{-1}(\Lambda(S) \cap Q_1)$ we have $\dim(S/Q) \leq m$.

As usual, write $Q_{i\alpha} = Q \cap S_{i\alpha}$ and set $P_{i\alpha} = \{x \in S_{i\alpha} | [b,x] \in Q_{i\alpha}\}$. Write $q_i = \dim S_{i\alpha}/Q_{i\alpha}$ and $p_i = \dim Q_{i\alpha}/(Q_{i\alpha} \cap P_{i\alpha})$. Clearly $q_i \leq m$. Also if $\lambda : Q_{i\alpha} \to L_{i\alpha}/Q_{i\alpha}$ is defined by $\lambda(x) = [b,x] + Q_{i\alpha}$ then $p_i = \operatorname{rank} \lambda \leq \dim L_{i\alpha}/Q_{i\alpha} = q_i + s_i$. However, if $b \in S$ then $\lambda : Q_{i\alpha} \to S_{i\alpha}/Q_{i\alpha}$ so $p_i \leq q_i$.

Suppose $x \in P_{i\alpha} \cap Q_{i\alpha}$, $y \in P_{-i\alpha} \cap Q_{-i\alpha}$. Then $[b, [x, y]] = [[b, x], y] + [x, [b, y]] \in [Q, Q]$ and hence [b, [x, y]] acts trivially on the one-dimensional Q-module N. But this implies $(x, y)_{\beta} = \beta([b, [x, y]]) = 0$. Since dim $L_{i\alpha}/(P_{i\alpha} \cap Q_{i\alpha}) \leq s_i + p_i + q_i$ Lemma 2.5.1 of [1] shows that

(8.1.2)
$$m_{i\alpha} = \operatorname{rank}(\cdot, \cdot)_{\beta}|_{L_{i\alpha} \times L_{-i\alpha}} \le s_i + s_{-i} + p_i + p_{-i} + q_i + q_{-i}$$

and so

$$m_{i\alpha} \leq 4m + 2s_i + 2s_{-i}.$$

As $p|m_{\alpha}$ this implies $s_1+s_{-1}\geq (p-4m)/2$. If m=1 (as $p\geq 11$) this implies $s_1+s_{-1}>3$. Also by (8.1.1) we have $m_{\alpha}\geq p^{m-1}$ and so

$$p^{m-1} \le 4m + 2s_1 + 2s_{-1}.$$

If $s_1 + s_{-1} < 2$ this implies

$$(8.1.3) p^{m-1} \le 4m + 2.$$

As $p \geq 11$ this is impossible for $m \geq 2$. Thus $s_1 + s_{-1} \geq 2$. Note that this implies $\widetilde{M} \neq S$ so M is not solvable and hence there exists $t \in \widetilde{U}$ with $t^p = t$ and $\alpha(t) = 1$. Now suppose $b \in S$. Then we have seen that $p_i \leq q_i \leq m$ and so (8.1.2) gives

$$m_{i\alpha} \leq 4m + s_i + s_{-i}$$
.

If $s_1+s_{-1}<3$ we see that (8.1.3) again holds. Thus $m\geq 2$ is impossible (and m=1 was previously shown to imply $s_1+s_{-1}>3$). Thus $s_1+s_{-1}\geq 3$ when $b\in S$. Furthermore $s_1+s_{-1}=3$ implies that $p^{m-1}\leq 4m+3$ so $m=2,\ p=11,\ m_\alpha=p$ and W=C.

Now let $t \in \widetilde{U}$ be as above $(t^p = t, \alpha(t) = 1)$. Then (letting $z_Q(t)$ denote the centralizer of t in Q) $(\operatorname{ad} z_Q(t))|_{\widetilde{M}}$ is nil, since otherwise $Q = z_Q(t) + \sum_{i=1}^{p-1} Q_{i\alpha}$ and so $q_1 + q_{-1} \leq 2$ which (as $p_i \leq q_i$) implies $m_{\alpha} \leq 7$, a contradiction. Also $b \in Q$ implies $Q_i \subseteq P_i$ and so $p_i = 0$ for all i. Then $m_{\alpha} \leq q_1 + q_{-1} + s_1 + s_{-1} \leq 7$, again a contradiction. Thus (as $\dim S_1/Q_1 = 2$) we have $S_1 = Ft + Fb + Q_1$ and so $z_S(t) = Ft + Fb + z_Q(t)$. Suppose $y \in z_Q(t)$. Then $[y, b] \equiv a_0t + a_1b \mod z_Q(t)$ and so $(\operatorname{ad} y)^k b \equiv a_0 a_1^{k-1} t + a_1^k b \mod z_Q(t)$. As $z_{\widetilde{M}}(t) \subseteq \overline{H}$ is nilpotent we have $a_1 = 0$. Thus $[z_Q(t), b] \subseteq Ft + z_Q(t)$ and so $(\operatorname{ad} b)^k z_Q(t) \subseteq Ft + z_Q(t)$ for all k. But $(\operatorname{ad} b)^2 \overline{H} \subseteq I$ by Lemma 3.1 and so (since $(\operatorname{ad} z_Q(t))|_{\widetilde{M}}$ is nil) we have $(\operatorname{ad} b)^k z_Q(t) \subseteq z_Q(t) \cap I$ for all $k \geq 2$. Of course, this implies $((\operatorname{ad} b)^k z_Q(t))N = (0)$ for all $k \geq 2$. Now let $X = \{z \in z_Q(t) | z_N(t) = 0\}$. Then $\dim z_Q(t)/X \leq 1$.

Let $\mu: X \to \widetilde{U}/X$ be defined by $\mu(x) = [b, x] + X$. Then if $x \in \ker \mu$ we have $((\operatorname{ad} b)^k x)N = (0)$ for all $k \geq 0$ and so (since [t, x] = 0) we have $\theta(x) = 0$. Thus $\ker \mu \subseteq \ker \theta$. Now rank $\mu \leq \dim \widetilde{U}/X \leq 3$ so $\dim \theta(\widetilde{U}) \leq 6$. Since Corollary 6.3 shows $\dim \theta(M_{i\alpha}) = \dim L_{i\alpha}/K_{i\alpha} = m_{i\alpha} \leq m_{\alpha} = p$ for all $i, 1 \leq i \leq p-1$, this implies $\dim \theta(\widetilde{M}) \leq p^2 - p + 6$, as required.

(8.2) Let S be the subalgebra given by Lemma 7.3. Applying Lemma 8.1 to S gives $\dim \theta(\widetilde{M}) \leq p^2 - p + 6$. Thus (as $\dim \theta(\widetilde{M}) \geq \dim \theta(M) \geq \dim \tau(M)$) Lemma 7.2 shows that M contains an $(\operatorname{ad} T)$ -invariant solvable subalgebra $S' \supseteq U$ with $\dim(L_{\alpha}/S'_{\alpha}) + \dim(L_{-\alpha}/S'_{-\alpha}) \leq 1$. However, applying Lemma 8.1 to S' yields a contradiction. Thus (3.3.2) is impossible and the proof of Theorem 2.1 is complete.

REFERENCES

- 1. R. E. Block and R. L. Wilson, The simple Lie p-algebras of rank two, Ann. of Math. 115 (1982), 93-168.
- 2. J. R. Schue, Representations of solvable Lie p-algebras, J. Algebra 38 (1976), 253-267.
- 3. H. Strade, Darstellungen auflosbarer Lie-p-algebren, Math. Ann. 232 (1978), 15-32.

- 4. B. Ju. Weisfeiler and V. G. Kac, The irreducible representations of Lie p-algebras, Funkcional. Anal. i Priložen. 5 (1971), 28-36; English transl., Functional Anal. Appl. 5 (1970), 111-117.
- R. L. Wilson, Cartan subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 234 (1977), 435–446.
- 6. ____, Simple Lie algebras of toral rank one, Trans. Amer. Math. Soc. 236 (1978), 287-295.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903